
formation of such a configuration of explosions comes about without reference to whether 
or not the second explosion (i.e., the shock front) overtakes the first explosion on the 
asymptote or not. The amplitude of the excess pressure in the first SW at distances of r I' 
from the axis corresponds approximately to 1.0, i.e., at distances of r' > r l' the evolu- 
tion of the double wave truly corresponds to the quasiacoustic stage. 

Within the scope of approximating nonlinear acoustics it is demonstrated analytically 
in [2] that the formation of double SW configurations with constant time spacing T = const 
between the fronts is associated with the specific agreement of the amplitudes and profiles 
of the two waves at the point r' = r I' 

Thus, we can see from these calculations that for a cylindrical double explosion, as 
well as for a spherical explosion, there exists a region of control-parameter values to, 

in which the second wave, within the period of evolution from r' = 0 to r' = r1', "posi- 
tions" itself with respect to the first wave in a manner such that it becomes possible to 
form two-wave configurations with quasiconstant spacing T between the fronts. The spacing 
T and the interval Ar' = r 2' - r I' depend exclusively on % and t o and can be determined only 
as a result of a numerical solution for the problem of a double explosion. 
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MICROSCOPIC CONDITIONS FOR THE EXISTENCE 

OF RAREFACTION SHOCK WAVES IN SOLIDS 

I. A. Miklashevich and V. V. Selyavko UDC 539.8 

The existence of rarefaction shock waves in a substance near the critical point of the 
Ist kind of phase transition was predicted by Zel'dovich [i] and observed experimentally 
[2-4]. 

Let us examine the conditions for the existence of rarefaction shock waves, such as 
are associated with phase transition of the IInd kind. 

In some manner let us initiate a multilateral rarefaction wave of amplitude P in a ma- 
terial subjected to preliminary stress, said wave of rather limited width such that the time 
required for a change in pressure is smaller than the stress relaxation time within the ma- 
terial. It is assumed that the body in the solid state with expansion such that AV = V L -- 
V m (V L, V m is the volume of the body in the liquid and solid phases, respectively) makes 
the transition to the metastable state [5]. In this case, if the body remains in the solid 
phase, the new state may be amorphous [6]. With such transitions the body undergoes continu- 
ous changes of state, whereas the symmetry undergoes sudden jumps. We know that an amorphous 
structure is, in and of itself, more symmetrical than any ordered structure. The process 
involved in the formation of a new structure under the action of a rarefaction wave proceeds 
through a series of intermediate structures whose crystallographic symmetry covers more than 
230 spatial groups [7], i.e., the transition process is represented by a sequence of states 
with ever-broader classes of symmetry. The conclusion of this process is found in the tran- 
sition of the material into a fully amorphous state (a phase transition of the IInd kind 
[8]). 

Minsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 30, 
No. 6, pp. 59-62, November-December, 1989. Original article submitted June 14, 1988. 
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From the Chapman-Jouguet equation 

l t {'o2V'~ 
s H  - s ,  = T \ ) (P, ,  - P,)" 

(p, pressure; S, entropy; T, temperature; subscripts I and II correspond to states I and 
II) follows the condition for the existence of a shock (sharp) rarefaction wave [i] 

(O2VlOp2)s < O. (1 )  

Let us examine the possibility of satisfying conditions (i) in the transition to a noncrystal- 
line state under the action of a rarefaction wave. We will write the thermodynamic potential 
of the system as a function of the pressure p, the temperature, and field strength h: ~ = 
~(p, h, T). The potential ~ is represented in the form [8] 

@(p, T, h) = @o(P, T) + at2q 2 + Bq ~ - -  qhV, (2 )  

where q is the parameter of the order on which h is dependent; t = t - Tc(P) ; Tc(P) is the 
temperature of the phase transition. 

The equilibrium condition (8~/Sq)T,h = 0 with consideration of (2) 

2at2B + 4Bq 8 = hV. (3) 

If the curve of (3) is nonmonotonic, it will clearly exhibit a bending point. Let us examine 
the case in which the curve is monotonic. The transition to a more symmetric phase must 
be accompanied by a drop in temperature and therefore t < 0, while for the sake of monotoni- 
city it is necessary that at > 0, so that consequently a < 0 [8]. Such a selection of the 
parameter imposes no limitations on the generality of our examination. The change of the 
intensity h to 0 corresponds to the situation in which the potential in (2), ~(p, T, h) = 
~(p, T) and the existence of a bend in the potential are equivalent to the existence of a 
point of bending in the T(p) curve. This gives us 

. _(dV/dp)  s = Cv/T~(dTJdp) 2 

(C V i s  t h e  h e a t  c a p a c i t y  w i t h  a c o n s t a n t  v o l u m e ) .  

The f o l l o w i n g  r e l a t i o n s h i p  i s  v a l i d  on t h e  p h a s e - t r a n s i t i o n  c u r v e :  

(Op/OT)v = dpgdT 

(Pc i s  t h e  p r e s s u r e ,  and t h e  s u b s c r i p t  c h e r e  and be low i n d i c a t e s  t h a t  t h e  q u a n t i t i e s  have  
been taken from the transition curve). If we bear in mind that T = T(p), and if we differ- 
entiate with respect to p, we can write 

k = 1 ( i 
- - \ O p t }  -~ -'Zpp tap ] + ~ ~ ~ = ~ -~ 2 dP ~ r e t dp 7] 

Because of the fact that Tc(p) is a monotonic function, the sign of its derivative dTc/d p 
does not change. We can always require near the point of the bend that d2Tc/dP 2 be less 
(or greater) than (i/2Tc)(dTc/dP) 2, and consequently, the condition for the existence of 
the rarefaction shock wave (i), associated with the transition to the noncrystalline meta- 
stable state, can be satisfied. 

The conditions 

d2Te > i ( dTc ~2. (4 )  

dp ~" <- '~e  \ dp ] (5) 

determine the required shape of the curve for phase equilibrium between the crystalline metal 
and the amorphous metal and impose limitations on the material in which these rarefaction 
shock waves can be initiated. The choice of one of the inequalities (4) and (5) depends 
on the sign of the derivative dTc/d p. Determining the sign at the point of transition is 
a particular problem. Proceeding from the microscopic theory of metals [9], we can~ wri%e 
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K = (0.0275 + O.lt02k~r2r 5.1012, (6)  

where K is the isothermal modulus of multilateral compression; k F is the Fermi wave vector; 
r c is the equilibrium distance between the atoms. In Eq. (6) [k F] = ~-i, [re] = ~, and thus 
K is expressed in units of J/m s . With consideration of the expressions for the Fermi vector 
k F = (3~2z/~0) I/~ Eq. (6) is rewritten to the form 

( ; CLZ5/3 C_z2r~ I 3V ~ 6T 
(e0 (l + ~6r))~/8 + e~ (l + ~6r)~ (7) 

Here C 1 = 0 . 0 2 7 5 " 1 0 1 : ( 3 " ~ )  5 /3 ,  C 2 = 0 . 1 1 0 2 " 1 0 1 2 ( 3 " ~ )  2 a r e  t h e  n u m e r i c a l  c o n s t a n t s ;  ~0 i s  
t h e  volume pe r  s i n g l e  a tom; z r e p r e s e n t s  t h e  number o f  v a l e n c e  e l e c t r o n s .  P r o v i s i o n  has  
been made in  (7)  f o r  t h e  t h e r m a l  e x p a n s i o n  o f  t h e  m e t a l  r c = r [ 1  + ( a / 3 ) 6 T ]  and ~ = ~0(1  + 
~6T) (~ i s  t h e  c o e f f i c i e n t  o f  t h e r m a l  e x p a n s i o n ,  6T r e p r e s e n t s  t h e  change  in  t e m p e r a t u r e  
within the shock wave). Differentiating K with respect to T, we have 

d--f = \ ~0 ] (i+~6r) ~/~ +--~0 -- ('+~r) ~ ~. (8) 

We know that 

t ( @ )  = V~ ~K 
~= po ~- ~ po v (9)  

(8 i s  t h e  t h e r m a l  c o e f f i c i e n t  o f  p r e s s u r e  and V 0, P0 r e p r e s e n t s  t h e  i n i t i a l  volume and p r e s -  
s u r e ) .  Then 

O~ I O2p t d2Pc I [ Vo~Z2 V o dK "~ = + ) ( lO) 
~r p0 ~-~ ~o ~r~ ~ i~0~ p0 ~?0  " x 

The t r a n s i t i o n  from p a r t i a l  t o  t o t a l  d e r i v a t i v e s  in  (10)  i s  based  on t h e  f a c t  t h a t  t h e  d e r i v a -  
t i v e  i s  t a k e n  f rom t h e  p h a s e - t r a n s i t i o n  c u r v e .  We c a n n o t  n e g l e c t  d ~ / d t  in  ( 1 0 ) ,  s i n c e  i t s  
m a g n i t u d e  i s  s u b s t a n t i a l  on t h e  p h a s e - t r a n s i t i o n  c u r v e .  

For the sake of specificity we will examine condition (4). We will rewrite it as follows: 

t. 2Te 
dUp/dT''"-~e > (dp/dTc) z �9 (11)  

From (Ii), with consideration of (i0) and (8), we will obtain 

(~!g dE d~ h -1 2Tc 
+ ~-~-~ + K dr~ ] > Po~K---- y .  (12) 

\ 

Let us substitute (7) and (8) into (12): 

"4- 

ClzSl~ Cp~r~ I + T 6T 

Q0 (i + a6T) ~/3 + + ~ (I + ~6r) ~ 

+ C1 l+~r4 3 ~  (i+~r) ~ ~F + 

d~ 2Te 

Qo (1 -1- ~ST) s/a + f2] (1 -~- r 2 " "~" > '  PoaK ------F-" 

(13) 

Having denoted C1~--~o ](t+~6T)8/3 

pact form " 

zr0 "~2 
= 9 .  J 

1 
a~ 2o ) =92, we will rewrite (13) (i + 

in more com- 

(14) 
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Inequality (14) in principle allows us to predict the possibility for the existence of rare- 
faction shock wave in a material on the basis of the known values of d~/dT near the point 
of phase transition and to determine the rate of change from the temperature of the coeffi- 
cient of thermal expansion. 

The hypothesis for the existence of rarefaction shock waves associated with phase tran- 
sition of the lind kind in solid bodies allows us from the viewpoint of several different 
positions to deal with the problem of the formation of so-called white phases which arrive 
under conditions of high-speed loads. The experimental verification of these results is 
the subject of further research. 
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